Structural Study of Lithium, Magnesium, and Barium Vanadate Glasses by Means of Mössbauer Spectroscopy

Tetsuaki Nishida,* Setsuko Saruwatari, and Yoshimasa Takashima Department of Chemistry, Faculty of Science, Kyushu University 33, Hakozaki, Higashiku, Fukuoka 812 (Received August 1, 1987)

All the isomer shifts for Li₂O₋, MgO₋, and BaO-V₂O₅ glasses containing 10 mol% Fe₂O₃ are in a range of 0.39—0.37 mm s⁻¹, indicating that iron is present as tetrahedral Fe³⁺ ions. This suggests that all the Fe³⁺ ions are present at the substitutional sites of tetrahedral V⁵⁺ or V⁴⁺ ions constituting the skeleton of each glass matrix. Distinct decreases in the quadrupole splitting and the glass transition temperatures are observed when Li₂O is incorporated into V₂O₅ matrix, suggesting a gradual change of the glass matrix from the layer structure originally composed of VO₅ tetragonal pyramids to a chain structure composed of VO₄ tetrahedra. This structural change is essentially the same as that of Na₂O- and K₂O-V₂O₅ glasses. On the other hand, simultaneous increases in the quadrupole splitting and the glass transition temperatures are observed with increasing MgO or BaO content in the case of MgO- and BaO-V₂O₅ glasses. This suggests a gradual change of the glass matrix from the original layer structure to a highly complicated three-dimensional network structure composed of VO₄ tetrahedra, similarly to the case of P₂O₅-V₂O₅ glasses.

It is well known that V₂O₅ has a layer structure composed of distorted VO₅ tetragonal pyramids, which can also be viewed as distorted trigonal bipyramids.^{1,2)} Each V⁵⁺ (or V⁴⁺) ion is known to be present at the center of the tetragonal pyramids, surrounded by five oxygen atoms. An IR study of several vanadate (V2O5-based) glasses performed by Dimitriev et al.3) revealed that introduction of alkali or alkaline earth oxides into the V2O5 matrix results in a destruction of the layer structure followed by a formation of tetrahedral VO₄ units. Furthermore, Dimitriev et al.3) elucidated that only VO₄ units are present in the skeleton of metavanadate glasses having alkali or alkaline earth oxide to V₂O₅ ratio equal to unity. The same conclusion was obtained by Segel and Creel4) in an NMR study of KVO3 glass. Considering that alkali metavanadate crystals (e.g. KVO₃ crystal) have a one-dimensional chain structure composed of VO₄ tetrahedra,⁵⁾ it is not surprising that alkali metavanadate glasses have a chain structure composed of VO₄ tetrahedra. These results are consistent with the recent Mössbauer results of alkali vanadate (K₂O-V₂O₅6) and Na₂O-V₂O₅7) glasses containing 10 mol% Fe₂O₃, obtained by the present authors. In the K₂O- and Na₂O-V₂O₅ glasses,^{6,7)} all the Fe3+ ions proved to be present at the substitutional sites of the V5+ or V4+ ions constituting VO4 In the recent Mössbauer study of phosphorus vanadate (P2O5-V2O5) glasses,8) it was concluded that introduction of P2O5 into the V2O5 matrix results in a structural change of the glass matrix from the layer structure originally composed of VO₅ tetragonal pyramids to a three-dimensional network structure composed of VO₄ tetrahedra. In contrast to these results, a neutron diffraction study performed by Wright et al.99 showed that V5+ or V4+ ion is surrounded by five oxygen atoms in P2O5-V2O5, BaO-V₂O₅, and PbO-V₂O₅ glasses and that the vanadate glasses are composed of interconnected and distorted VO_5 tetragonal pyramids. A similar conclusion was obtained in EXAFS and XANES¹⁰⁾ and NMR and ESR¹¹⁾ studies of P_2O_5 – V_2O_5 glasses.

The present Mössbauer study was performed in order to elucidate the structural change of lithium, magnesium, and barium vanadate glasses, brought about by incorporating Li₂O, MgO, and BaO into V_2O_5 matrix. DTA measurements were performed in order to examine the structural change, such as a change in the coordination number of V^{5+} or V^{4+} ions and a formation of nonbridging oxygen atoms, through the composition dependency of the glass transition temperatures (T_8).

Experimental

Lithium, magnesium, and barium vanadate glasses containing 10 mol% Fe₂O₃ were prepared by melting the individual mixtures (lg) of commercially available Li₂CO₃, MgCO₃, BaCO₃, V₂O₅, and Fe₂O₃, of guaranteed reagent grade. Each of the mixture was melted at 950-1000 °C for 1h in an electric muffle furnace under the ambient atmosphere. Ten mol% Fe₂O₃ was incorporated into the individual mixture as a Mössbauer probe. After the fusion, each melt in a platinum crucible was quenched with icecold water. All the vanadate glasses prepared in the present study are almost black in color, having a metallic luster. Mössbauer and DTA measurements were performed on the pulverized glasses, according to the procedures reported in the previous papers. 6,8) A piece of metallic iron foil enriched with 57Fe was used as a reference for the isomer shift. Powder of Al₂O₃ was used as a standard material in the DTA measurements.

Results and Discussion

A Mössbauer spectrum of Li₂O-V₂O₅ glass measured at room temperature is shown in Fig. 1, which indicates only the presence of paramagnetic Fe³⁺ ions of high spin state.^{12,13)} No absorption peak due to Fe²⁺ ions nor magnetic species is observed in any of

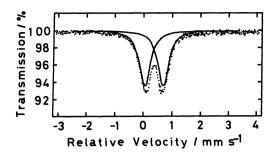


Fig. 1. Mössbauer spectrum of 30Li₂O·60V₂O₅·10Fe₂O₃ glass measured at room temperature.

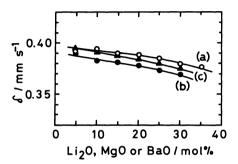


Fig. 2. Composition dependencies of the isomer shift
(δ) of Fe³+ ions in (a) Li₂O-, (b) MgO-, and
(c) BaO-V₂O₅ glasses containing 10 mol% Fe₂O₃.

the Mössbauer spectra. The linewidth (FWHM) is characteristic of the absorption peak due to iron in glasses, being in a range of 0.59—0.46 mm s⁻¹. All the isomer shifts of Fe3+ ions are located in a small range of 0.39—0.37 mm s⁻¹ with respect to metallic iron, as is shown in Fig. 2. Earlier Mössbauer studies of several glasses¹⁴⁻¹⁶⁾ have shown that Fe³⁺ ions are present at tetrahedral environments in borate and silicate glasses. This is the case for the recent Mössbauer results on borate¹⁷⁻²⁰⁾ and borosilicate²⁰⁻²²⁾ glasses obtained by the present authors' group. In these glasses,17-22) all the isomer shift values are located in a range of 0.38—0.22 mm s⁻¹ with respect to metallic iron. The experimental error for the isomer shift is usually estimated to be ± 0.01 mm s⁻¹. Judging from the experimental results shown in these reviews and papers, 14-22) it is concluded that all the Fe3+ ions are present at tetrahedral environments in the Li₂O-, MgO-, and BaO-V2O5 glasses, forming FeO4 tetrahedra. This conclusion indicates the presence of tetrahedral VO₄ units, because Fe³⁺ ions should be present either at the substitutional sites of the V5+ (or V⁴⁺) ions constituting the skeleton of the glass matrix or at the interstitial sites in the glass matrix. (The presence of V4+ ions has already been confirmed by ESR measurements of several vanadate glasses, e.g., P₂O₅-V₂O₅ glasses.⁸⁾) It is considered that coordination number of metal ions present at interstitial sites is usually larger than that of the metal ions at substitutional sites. The same conclusion on the presence of VO₄ tetrahedra has been obtained in the

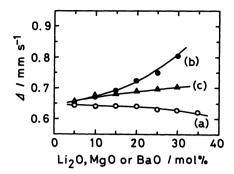


Fig. 3. Composition dependencies of the quadrupole splitting (Δ) of Fe³⁺ ions in (a) Li₂O-, (b) MgO-, and (c) BaO-V₂O₅ glasses containing 10 mol% Fe₂O₃.

recent Mössbauer studies of K2O-, Na2O-, and P₂O₅-V₂O₅ glasses containing 10 or 5 mol % Fe₂O₃.6-8) The isomer shift values show a distinct decrease with increasing Li₂O, MgO, or BaO content (Fig. 2). Similar composition dependency of isomer shift observed in K₂O-V₂O₅6) and Na₂O-V₂O₅7) glasses was ascribed to a formation of nonbridging oxygen atoms in VO₄ tetrahedra, because a simultaneous decrease in the isomer shift and the quadrupole splitting of Fe3+ ions was observed with increasing K2O or Na2O content. This is true in the case of Li₂O-V₂O₅ glasses studied in the present paper, where a simultaneous decrease in the isomer shift (Fig. 2) and the quadrupole splitting (Fig. 3) is observed with increasing Li₂O content. The experimental error for the quadrupole splitting is estimated to be $\pm 0.02 \text{ mm s}^{-1}$. The decrease in the quadrupole splitting of Fe3+ ions is well ascribed to an increased symmetry of the iron-oxygen tetrahedra, because high-spin Fe³⁺ ions have a symmetric electron configuration of 3d5 in the outermost orbital and the electric field gradient brought about by the neighboring atoms or ions should primarily cause the nuclear quadrupole interaction. The simultaneous decrease in the isomer shift (Fig. 2) and the quadrupole splitting (Fig. 3) observed in Li₂O-V₂O₅ glasses is therefore ascribed to a formation of nonbridging oxygen atoms in VO₄ tetrahedra. Also, it is considered that a structural change of the glass matrix occurs from the two-dimensional layer structure originally composed of VO₅ tetragonal pyramids to a chain structure composed of VO₄ tetrahedra, similarly to the case of K₂O-V₂O₅6) and Na₂O-V₂O₅7) glasses.

On the other hand, increases in the quadrupole splitting are observed in the case of MgO- and BaO-V₂O₅ glasses (Fig. 3). A similar phenomenon was observed in P₂O₅-V₂O₅ glasses containing 5 mol% Fe₂O₃,89 where an increase in the quadrupole splitting of Fe³⁺ ions, indicating a decreased symmetry of the FeO₄ (and VO₄) tetrahedra, was ascribed to a gradual change of the glass matrix from the layer structure originally composed of VO₅ tetragonal pyramids to

the three-dimensional network structure composed of VO₄ tetrahedra. The same conclusion was drawn from the similar composition dependency of the glass transition temperatures of the P₂O₅-V₂O₅ glasses.⁸⁾ The increase in the quadrupole splitting of Fe³⁺ ions, observed in the case of MgO- and BaO-V₂O₅ glasses (Fig. 3), is therefore ascribed to a gradual change of the glass matrix from the two-dimensional network structure composed of VO₅ tetragonal pyramids to a highly complicated three-dimensional network structure composed of VO4 tetrahedra. In contrast to Li₂O-V₂O₅ glasses, it is considered that nonbridging oxygen atoms are rarely formed in the VO4 tetrahedra constituting the skeleton of MgO- and BaO-V2O5 glasses, because the quadrupole splitting values show a continuous increase with increasing MgO or BaO content. It is therefore concluded that fraction of nonbridging oxygen atoms decreases with increasing MgO or BaO content in the MgO- and BaO-V2O5 glasses. It can be seen from Fig. 3 that the quadrupole splitting of Fe3+ ions in the MgO-V2O5 glasses shows a more distinct composition dependency than that of the Fe3+ ions in the BaO-V2O5 glasses. This will be due to a large ionic potential of Mg²⁺ ion. (The ionic potential is generally denoted by Z/r, where Z is the charge of cation and r is the ionic radius.) It is speculated that cations having large ionic potential will bring about an increased chemical bond strength between the cations and neighboring oxygen atoms. As a result, the resultant structure will become more complicated.

Regarding the short-range (local) structure of vanadate glasses, all the recent⁶⁻⁸⁾ and present Mössbauer results are consistent with the IR results obtained by Dimitriev et al.3) and also with the NMR results obtained by Segel and Creel.4) (In these studies,^{3,4)} it was reported that all the vanadate glasses are composed of VO₄ tetrahedra.) Regarding the middle- or long-range structure, it is concluded that structure of the glass matrix (skeleton) strongly depends on the type of so-called "network modifier," and that the glass matrix of alkaline earth vanadate glasses has highly complicated three-dimensional network structure. This structural change is similar to that of P₂O₅-V₂O₅ glasses.⁸⁾ It is interesting to compare the present results on MgO- and BaO-V₂O₅ glasses with the previous results obtained by different methods, such as a neutron diffraction9) result on P₂O₅- and BaO-V₂O₅ glasses, an EXAFS and XANES¹⁰⁾ result on P₂O₅-V₂O₅ glasses, and an NMR and ESR11) result on P2O5-V2O5 glasses. In these studies, 9-11) coordination number of V5+ or V4+ ions was reported to be always 5 irrespective of the composition. It seems that apparently higher coordination number (5) was obtained in those studies⁹⁻¹¹⁾ owing to a highly complicated threedimensional network structure of the glass matrix.

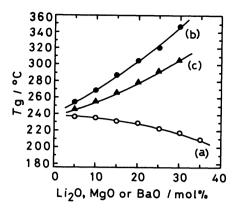


Fig. 4. Composition dependencies of the glass transition temperature (T_8) of (a) Li₂O₋, (b) MgO₋, and (c) BaO-V₂O₅ glasses containing 10 mol% Fe₂O₃.

Each DTA curve of the Li₂O-, MgO-, and BaO-V₂O₅ glasses containing 10 mol% Fe₂O₃ consists of an endothermic peak due to glass transition and one or a few exothermic peak(s) due to crytallization, similarly to the case of several vanadate glasses studied recently. 6-8) All the glass transition temperatures (T_g) are plotted in Fig. 4 against Li₂O, MgO, or BaO content. Previous Mössbauer and DTA studies of $K_2O-V_2O_5^{6}$ and $Na_2O-V_2O_5^{7}$ glasses revealed that T_g shows a distinct decrease when coordination number of V5+ or V4+ ions decreases from 5 to 4 and when nonbridging oxygen atoms are formed in the VO₄ tetrahedra. This is the case for the Li₂O-V₂O₅ glasses studied in the present paper, where the T_g shows a continuous decrease from 236 to 209°C with increasing Li₂O content (Fig. 4). Considering the NMR result on KVO₃ glass⁴⁾ described above, i.e. the glass has a chain structure composed of VO₄ tetrahedra, the present Mössbauer and DTA results on the Li₂O-V₂O₅ glasses lead to the conclusion that a gradual structural change occurs from the twodimensional layer structure originally composed of VO₅ tetragonal pyramids to the one-dimensional chain structure composed of VO₄ tetrahedra. (This corresponds to the decrease in the coordination number of V5+ and V4+ ions from 5 to 4.) It can be seen from Fig. 4 that a formation of nonbridging oxygen atoms in the VO4 and FeO4 tetrahedra is also reflected as a continuous decrease in Tg of the Li₂O-V₂O₅ glasses. On the other hand, an increase in T_g is observed with increasing MgO or BaO content in the MgO- and BaO-V₂O₅ glasses (Fig. 4). This is in good agreement with the Mössbauer results described above, i.e., a gradual change of the glass matrix occurs from the original layer structure composed of VO5 tetragonal pyramids to the three-dimensional network structure composed of VO₄ tetrahedra. It should be noted that the T_8 shows a distinct increase in spite of the decreased coordination number of V5+or V4+ ions

from 5 to 4, as described above. Similar results were obtained in the DTA measurements of P_2O_5 – V_2O_5 glasses⁸⁾ having a three-dimensional network structure. The difference in the structural change between alkali and alkaline earth vanadate glasses will be caused by the different positive charges of alkali (+1) and alkaline earth (+2) metal ions present at the interstitial sites. It is also considered that higher ionic potential of alkaline earth metal ions (e.g. Mg^{2+} ions) causes the formation of highly complicated three-dimensional network structure.

It is concluded that all the Fe3+ ions are tetrahedrally coordinated with oxygen atoms and are present at the substitutional sites of V5+ or V4+ ions, which constitute the skeleton of vanadate glasses in the form of VO₄ tetrahedra. It is also concluded that introduction of Li₂O into V₂O₅ matrix results in a gradual change of the glass matrix from the original layer structure composed of VO5 tetragonal pyramids (or trigonal bipyramids) to the chain structure composed of VO₄ tetrahedra. It is considered that VO₄ tetrahedra have some nonbridging oxygen atoms and that the structural change of Li₂O-V₂O₅ glasses is essentially the same as that of Na₂O- and K₂O-V₂O₅ glasses. On the other hand, it is concluded that introduction of MgO or BaO into the V2O5 matrix results in a gradual change of the glass matrix from the original layer structure composed of VO₅ tetragonal pyramids to the highly complicated three-dimensional network structure composed of VO₄ tetrahedra, similarly to the structural change of P2O5-V2O5 glasses.

The authors are grateful to Dr. Koji Yamada of Hiroshima University and Dr. Hiroshi Hirashima of Keio University for their useful comments and discussion. One of the authors (TN) is grateful to Corning Research Grant, Nakamura Research Grant, Yoshida Research Grant, and a Grant-in-Aid for Scientific Research No. 61740350 from the Ministry of Education, Science and Culture.

References

1) A. Byström, K. A. Wilhelmi, and O. Brotzen, Acta

Chem. Scand., 4, 1119 (1950).

- 2) K. Jansen and G. Sperlich, *Phys. Status Solidi B*, 55, 495 (1973).
- 3) Y. Dimitriev, V. Dimitrov, M. Arnaudov, and D. Topalov, J. Non-Cryst. Solids, 57, 147 (1983).
- 4) S. L. Segel and R. B. Creel, Can. J. Phys., 48, 2673 (1970).
 - 5) H. T. Evans, Z. Kristallogr., 114, 257 (1960).
- 6) T. Nishida and Y. Takashima, Bull. Chem. Soc. Jpn., 60, 941 (1987).
- 7) T. Nishida, M. Ogata, and Y. Takashima, *Bull. Chem. Soc. Jpn.*, **60**, 2887 (1987).
- 8) T. Nishida, M. Ogata, and Y. Takashima, J. Non-Cryst. Solids, 94, 229 (1987).
- 9) A. C. Wright, C. A. Yarker, P. A. V. Johnson, and R. N. Sinclair, *J. Non-Cryst. Solids*, **76**, 333 (1985).
- 10) S. Stizza, I. Davoli, O. Gzowski, L. Murawski, M. Tomellini, A. Marcelli, and A. Bianconi, *J. Non-Cryst. Solids*, **80**, 175 (1986).
- 11) F. R. Landsberger and P. J. Bray, J. Chem. Phys., 53, 2757 (1870).
- 12) N. N. Greenwood and T. C. Gibb, "Mössbauer Spectroscopy," Chapman and Hall Ltd., London (1971) Chap. 3.
- 13) R. Ingalls, F. Van der Woude, and G. A. Sawatzky, "Iron and Nickel," in "Mössbauer Isomer Shifts," ed by G. K. Shenoy and F. E. Wagner, North-Holland Pub Co., Amsterdam (1978), Chap. 7.
- 14) C. R. Kurkjian, J. Non-Cryst. Solids, 3, 157 (1970).
- 15) J. M. D. Coey, J. Phys., 35, C6-89 (1974).
- 16) W. Müller-Warmuth and H. Eckert, *Phys. Rep.*, **88**, 91 (1982).
- 17) T. Nishida and Y. Takashima, J. Non-Cryst. Solids, 37, 37 (1980).
- 18) T. Nishida, T. Shiotsuki, and Y. Takashima, J. Non-Cryst. Solids, 41, 161 (1980).
- 19) T. Nishida, T. Hirai, and Y. Takashima, J. Non-Cryst. Solids, 43, 221 (1981).
- 20) T. Nishida and Y. Takashima, "Application of Mössbauer Effect on the Crystallization of Several Glasses," in "Industrial Applications of the Mössbauer Effect," ed by G. J. Long and J. G. Stevens, Plenum Press, New York and London (1986), pp. 409—422.
- 21) T. Nishida, T. Hirai, and Y. Takashima, Phys. Chem. Glasses, 22, 94 (1981).
- 22) T. Nishida, T. Hirai, and Y. Takashima, *Bull. Chem. Soc. Jpn.*, **54**, 3735 (1981).